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Using two coordination bonds, a porphyrin-quinone supramolecule with a large association constant is assembled; 
intramolecular photoinduced electron transfer from the excited singlet state of the porphyrin to the quinone is 
observed by steady-state fluorescence quenching and time-resolved fluorescence studies. 

Photoinduced electron transfer (ET) systems with efficient and 
long-lived charge separation are of great interest in relevance to 
artificial photosynthesis and molecular-level optoelectronics. A 
number of covalently linked donor (D)-acceptor (A) molecules 
have been prepared to help understand the controlling factors in 
photosynthetic ET. ,2 In most cases much synthetic effort has 
concentrated on the construction of D-A systems with rigid 
spacers or to build up supermolecules with multistep ET 
processes. However, the synthesis of such sophisticated systems 
is generally difficult. A much easier approach to D-A systems 
is to use weak molecular interactions, by which separately 
prepared D and A units are combined.3 So far, there has been 
relatively little attention paid to noncovalently linked photo- 
synthetic model systems where hydrogen bonds4 or coordina- 
tion bonds5 are employed. We adopted a two-point coordination 
bonding strategy for the construction of porphyrin-quinone 
supramolecule 2-5 (Fig. 1). This strategy allows the high 
concentration of the supramolecule in solution and relatively 
fixed geometry between the redox pair.6 

Coupling of 1 and 3,6-bis(bromomethyl)phenanthrene in the 
presence of potassium carbonate in DMF followed by the 
treatment of the product with zinc acetate in CHC13 afforded 2 
in 43% yield (Scheme 1). Bi- and mono-dentate compounds 4 
and 7 were prepared by the coupling reaction of alcohols 3 and 
6 with 4-chloropyridine hydrochloride, respectively, in the 
presence of potassium carbonate, potassium hydroxide and 
tris(3,6-dioxaheptyl)amine in toluene. Oxidation of 4 with ceric 
ammonium nitrate in MeCN-H2O gave bidentate quinone 5 in 
23% yield, while the monodentate quinone was not obtained in 
the reaction of 7 under the same conditions because of the 
instability of the corresponding quinone.? 

Compound 4 binds to the two porphyrin rings in 2 over a wide 
concentration range (10-7 to 10-3 mol dm-3), and leads to the 
exclusive formation of the bridging structure shown in Fig. 1. 
The structure of the complex was established by UV-VIS 
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Fig. 1 Complex between zincporphyrin dimer 2 and pyridine-linked 
quinone 5 

absorption and lH NMR spectra. Binding constants were 
obtained on the basis of UV-VIS spectrophotometric titrations 
of 2 (8.0 X mol dm-3) with 4 and 7 in CH2C12 by using the 
band shift in Soret absorption on ligation, respectively.6 The 
binding constant (K1)  of 4 to 2 is 1.1 X 107 dm3 mol-1, which 
is three orders of magnitude larger than that for the binding of 
7 to 2 (K1 = 2.4 X 104 dm3mol-1, K2 = 6.4 X 103 
dm3 mol-l).$ The larger binding constant for the coordination 
of the bidentate ligand to the porphyrin dimer suggests that 2 
and 4 predominantly form the bridging structure. 

mol dm-3) and 0.6 
equiv. of 4 in CDC13 clearly shows the bridging structure. Thus, 
the characteristic pyridyl aromatic signals at 6 2.22 and 4.86 
were shifted upfield by ca. 6 and 2 ppm, respectively, owing to 
the ring current effect of zincporphyrins.6 The methoxy signals 
of 4 appeared at 6 2.79 and 3.26. The chemical shift difference 
(0.47 ppm) is unusually large and no pronounced splitting of 
methoxy signals of 7 was observed for 2-7 showing the rigid 
structure of the 2-4 complex. 

The fluorescence quenching of 2 (8.0 X 10-7 mol dm-3) in 
CH2C12 with excitation at 428 nm was investigated by addition 
of 100 equiv. of 4 or 5. Appreciable change for the fluorescence 
spectra of 2 was seen in shape as well as in peak position after 
the addition. Relative intensity for the fluorescence of 2-5 vs. 
2-4 is 0.06 and no fluorescence quenching of 2 occurred in the 
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Scheme 1 Reagents and conditions: i, 3,6-bis(bromomethyl)phenanthrene, 
KzC03, DMF; ii, Zn(OAc)*, CHC13; iii, 4-chloropyridine hydrochloride, 
K2C03, KOH, tris(3,6-dioxaheptyl)amine, CGHSCH,; iv, ceric ammonium 
nitrate, MeCN-H20 
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presence of the reference quinone, where the two pyridyl groups 
in 5 are replaced by phenyl groups. Therefore, the quenching 
can be ascribed to intramolecular ET from the excited singlet 
state of the porphyrin to the quinone. Time-resolved, single- 
photon counting fluorescence studies were made for 2 (2.2 X 
10-6 mol dm-3) and 100 equiv. of 4 in CH2C12 with excitation 
at 405 nm to give monoexponential decay kinetics with a 
lifetime of 1.2 ns ( = to). When 100 equiv. of 5 instead of 4 was 
added, the decay profiles could be analysed in terms of one 
major exponential component of lifetimes, 60 ps (=  TI), and 
two minor exponential components of them, 1.2 ns ( =  t2) and 
4.0ns ( =  ~ 3 ) .  The short-lived component is assigned to the 
fluorescence of the porphyrin moieties quenched by the quinone 
within the 2-5 complex, while the long-lived components are 
considered to the porphyrin fluorescences which are not 
quenched by the quinone. Based on the above results, ET rate 
for charge separation was obtained to be 1.6 X 1O1O s-1( = t1-l 
- to-'). Although the mechanism of ET, 'through bond' or 
'through space' is not clear at this moment, the present study 
introduces well-defined and conformationally restricted system 
capable of noncovalent ET processes. 
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Footnotes 
i Spectral data for 2: 'H NMR (270 MHz, CDC13) 6 1.48-1.55 (36H, m, 
Pri-Me), 3.20 (6H, m, Pri-H), 5.65 (4H, s, -OCH2-), 7.44-7.59 (16H, m, 
phenyl-H), 7.86 (2H, s, 9,1O-phenanthrene(pht)-H), 7.90 (2H, dd, 2,7-pht- 

H), 8.06-8.17 (18H, m, 13-pht-H), 8.94 (16H, m, 0-H), 9.04 (2H, s, 

For 4: lH NMR (270 MHz, CDC13) 6 3.79 (6H, s, OMe), 5.15 (4H, s, 
-OCH2-), 6.90 (4H, dd, pyridine-H), 7.00 (s, 2H, phenyl-H), 8.46 (4H, dd, 
pyridine-H). 

For 5: 'H NMR (270 MHz, CDC13) 6 5.00 (4H, s, -OCH2-), 6.70 (4H, dd, 
pyridine-H), 6.97 (2H, s, quinone-H), 8.5 1 (4H, dd, pyridine-H). 

For 7: lH NMR (270 MHz, CDC13) 6 3.76 (3H, s, OMe), 3.83 (3H, s, 
OMe), 5.13 (2H, s, -OCH2-), 6.84 (2H, s, 5,6-phenyl-H), 6.89 (2H, dd, 
pyridine-H), 6.99 (lH, s, 3-phenyl-H), 8.43 (2H, dd, pyridine-H). + K1 = [porphyrin-ligand 1 : 1 complex]/([porphyrin][ligand]), K2 = 
[porphyrir-ligand 1 : 2 complex]/([porphyrin-ligand 1 : 1 complex][li- 
gandl). 

4,5-pht-H). FAB-MS 1842 (M - l)+. 
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